The convergence space of minimal usco mappings
نویسنده
چکیده
A convergence structure generalizing the order convergence structure on the set of Hausdorff continuous interval functions is defined on the set of minimal usco maps. The properties of the obtained convergence space are investigated and essential links with the pointwise convergence and the order convergence are revealed. The convergence structure can be extended to a uniform convergence structure so that the convergence space is complete. The important issue of the denseness of the subset of all continuous functions is also addressed.
منابع مشابه
Strong convergence of variational inequality problem Over the set of common fixed points of a family of demi-contractive mappings
In this paper, by using the viscosity iterative method and the hybrid steepest-descent method, we present a new algorithm for solving the variational inequality problem. The sequence generated by this algorithm is strong convergence to a common element of the set of common zero points of a finite family of inverse strongly monotone operators and the set of common fixed points of a finite family...
متن کاملStrong convergence results for fixed points of nearly weak uniformly L-Lipschitzian mappings of I-Dominated mappings
In this paper, we prove strong convergence results for a modified Mann iterative process for a new class of I- nearly weak uniformly L-Lipschitzian mappings in a real Banach space. The class of I-nearly weak uniformly L-Lipschitzian mappings is an interesting generalization of the class of nearly weak uniformly L-Lipschitzian mappings which inturn is a generalization of the class of nearly unif...
متن کاملStrong convergence of modified iterative algorithm for family of asymptotically nonexpansive mappings
In this paper we introduce new modified implicit and explicit algorithms and prove strong convergence of the two algorithms to a common fixed point of a family of uniformly asymptotically regular asymptotically nonexpansive mappings in a real reflexive Banach space with a uniformly G$hat{a}$teaux differentiable norm. Our result is applicable in $L_{p}(ell_{p})$ spaces, $1 < p
متن کاملSome More Recent Results concerning Weak Asplund Spaces
In this paper, we will provide some examples of Banach spaces that are Gâteaux differentiability spaces but not weak Asplund, weak Asplund but not in class(̃), in class(̃) but whose dual space is not weak∗ fragmentable. We begin with some definitions. A Banach space X is called a weak Asplund space [almost weak Asplund] (Gâteaux differentiability space) if each continuous convex function define...
متن کاملUniform connectedness and uniform local connectedness for lattice-valued uniform convergence spaces
We apply Preuss' concept of $mbbe$-connectedness to the categories of lattice-valued uniform convergence spaces and of lattice-valued uniform spaces. A space is uniformly $mbbe$-connected if the only uniformly continuous mappings from the space to a space in the class $mbbe$ are the constant mappings. We develop the basic theory for $mbbe$-connected sets, including the product theorem. Furtherm...
متن کامل